
3Desque: Interface Elements for a 
3-D Graphical User Interface 

 
Gavin Miller 

Interval Research Corp. 
DrGavin@aol.com 

 

Sally Grisedale 
Excite, Inc. 

grisedale@earthlink.net 
 

Kenneth T. Anderson 
MediaOne Labs 

kanderson@MediaOne.com 

Abstract 
This paper explores some design possibilities and 
constraints for 3D enhancements of graphical user 
interfaces.  This is done with the aim of conveying more 
information in less screen space, while avoiding visual 
clutter. Design elements include the use of “slapped-
back” windows obtained by projecting windows and icons 
into three dimensions; “trays”, an alternative to folders or 
piles; the use of transparent "beams" for indicating 
hierarchy; and the use of "periphs" for a form of fisheye 
projection on window borders. In addition we employ 
shading and shadows to enhance the interface, and 
automatic placement algorithms to prevent visually 
confusing occlusion. By considering these approaches 
together, rather than in isolation, the interactions between 
the different modifications are made explicit.  
 
Keywords 
Graphical user interface, 3-D, 2-D, affordance, projections, 
orthographic, perspective, piles, progressive disclosure, 
trays, periphs, beams, slapped-back windows, fisheye 
views. 
 
1.0 Introduction 
"Escaping this flatland is the essential task of envisioning 
information - for all the interesting worlds (physical, 
biological, imaginary, human) that we seek to understand 
are inevitably and happily multivariate in nature."  
Edward R. Tufte, Envisioning Information, 1990 [1]. 
 
Graphical user interfaces have had spectacular success 
over the last decade, becoming the de-facto standard for 
interaction with file structures and applications on 
personal computers.  However, their intuitive ease-of-use 
and familiarity mask a number of underlying problems, 
[2]. These problems only become apparent as people try 
to use the interfaces to manipulate larger numbers of files 
or to orchestrate complex tasks. We list some of these 
problems below. 
 
Visual Clutter: 
When orchestrating complex tasks, such as copying 
between applications, users may end up with lots of 
overlapping windows which are only partially visible. This 
may lead to a cluttered visual field such as Figure 1.  
 

The Visual Cliff: 
When an object is off the edge of the visible portion of a 
window, there is very little indication that it is there.  The 
window’s scroll-bar gives some indication of the size of 
the scrollable area, but not how many files occupy that 
space or their spatial arrangement. Different views, such as 
text lists, (Figure 2) may be more compact, but the visual 
cliff remains. The visual cliff also exists for the edge of the 
display. This may be particularly problematic for a 
scrollable desktop. 
 

 
 

Fig. 1  Visual clutter in a window-based graphical user 
interface. 

 

      
 

Fig. 2  Viewing a list of files. 
 
Hierarchy as Memory 
When opening a folder, the window grows out of the icon.  
However, once in position, the relationship is graphically 
lost and has to be replaced by an explicit query (such as 
command clicking on the title bar of the window) or 
remembered by the user. 
 
Inefficient Layout 
A window full of named icons does not use space 
efficiently.  Each icon is surrounded by lots of empty 



space. Icons cannot be packed more closely together 
because of the presence of file names (which tend to be 
wider than the icon). In addition, careless placement of 
icons or the use of file names which are too long can lead 
to icons that overlap and occlude each other.  
 
Unexpected Icon Placement 
Automatic placement of icons occurs as the result of a user 
specified event such as “Clean Up Window”.  This can 
lead to unexpected large movements of the icons, often off 
the edge of the visible portion of the scrollable area. 
 
Uninformative File Icons 
File icons are typically small and uninformative, at best 
giving a small view of an image document, at worst merely 
indicating the type of document and its authoring 
application. This leads to an over-reliance on the names of 
files as an identification mechanism, which in turn 
encourages the use of long file names. 
 
Uninformative Folder Icons 
Folders give little indication as to their contents.  A rare 
exception in the Macintosh user interface is the bulging of 
the trash can when it has contents, and shared folders [3]. 
Where modifications do occur, they usually indicate 
simple state changes such as empty or full, and fail to 
convey the actual contents of the folder. To browse the 
contents it is necessary to open the corresponding window.  
This uses a lot of space and contributes to visual clutter. 
We would rather have an interface mechanism which 
allows for progressive disclosure while being more 
compact than a window. 
 
This paper tries to address some of these problems in the 
context of 3-D enhancements to a graphical user interface 
(dubbed 3Desque, pronounced "3 Dee Esk"). This allows 
for the introduction of new interface elements as well as 
an exploration of various projections to make 
representations more compact without losing context. By 
considering these approaches together, rather than in 
isolation, the interactions between the different 
modifications can be explored.  
 
First, we discuss the genesis of the project and then 
introduce our development methodology and user study. 
Then we describe our approach to browsing individual 
documents at different levels of detail. Next, we introduce 
solutions to alleviate the visual cliff. Then we explore 
projecting windows and icons into three dimensions and 
discusses the trade-off between perspective and 
orthographic projections.  Next, we introduce the idea of 
“trays” as an alternative to folders or piles [4],  then we 
talk about the special need for automatic placement 
algorithms in 3-D projection and propose a solution. After 
that, we discuss the use of transparent beams for 
in explore the use of 

shading and shadows to enhance the interface. Lastly, we 
end the paper with some conclusions. 
 
2.0 Genesis of the Project 
Every design project begins with an idea. In this case we 
became interested in exploring the use of 3D elements to 
extend the 2D graphical user interface of the Macintosh. 
The work began in 1994 as an exploratory project in Apple 
Computer, Inc.'s Advanced Technology Group and ran for 
nine months. The catalyst for this work was a discussion of 
the use of slapped-back windows to let a user keep the 
context of a window while using less space. As originally 
envisioned, the slapped-back window would have been 
planar and inactive, merely able to be flipped back up for 
subsequent interaction. 

dicating hierarchy [5] [6]. We 

, 
 
The use of animation, to flip the window back in space
was controlled by a button on the front edge. The 
movement was similar to the animated slabs used at the 
front of the PARC Information Visualizer [7] although at 
the time the project had not been a direct influence on our 
work. 
 
A series of brainstorming sessions led to the graphic in 
Figure 3. 3D objects sit atop a planar slapped back 
window. The decision was made to keep text screen 
aligned for legibility at standard pixel resolutions. 

 
Fig. 3  Slapped-back window concept with 3D file icons. 

 

 
Fig. 4  Second design for 3D objects. 

 
It was apparent that individual 3D elements would obscure 
each other and seemed to offer no particular advantages. 
Figure 4 shows a second design which attempted to replace 
the books with stacks of papers sitting on plinths, a 



concept used in Piles [4]. Again object occlusion was a 
problem and the containers for objects seemed to offer no 
great advantages over current folders.  
 
We did careful analysis of existing 2D interfaces and 
related work in the field of document management 
systems. At the time of developing the project we looked 
at work already produced at Apple Computer, Inc. This 
included: Piles, which allowed users to stack documents 
[4],  HotSauce, a zoomable interface for browsing meta 
content tags [8], and Loretta Staples' work using  
perspective and lighting effects to enrich the visual 
vocabulary of the graphical user interface [9]. We also 
looked at related work in 

generated layout for overviews of data 
groups [10], "The Information Vizualizer" project at 
Xerox PARC showed a variety of 3D visualizations and 
interaction methods [5] [6] [7] [11] [12]. "Workscape" 
treated file representation like scenes from a movie 
"coming into focus along parallel dimensions" [13]. "Pad" 
used a zoomable alternative to the computer interface 
[14]. Fisheye views were used for viewing graphs by 
Sarkar and Brown [15] and more general views were 
employed by George Furnas [16]. 

the field. Treemap used an 
automatically 

 
From our analysis we came up with criteria outlined in the 
introduction. We used these as our guide in the subsequent 
development phase of the project. 
 
2.1 Development Methodology and User Study 
As they evolved, the graphical ideas for the user interface 
were first implemented in Macromedia Directorª [17], to 
create the impression of the interface in action. This 
worked well for certain aspects of the design, such as 
developing the graphical look of the interface, simple 
animations and live dragging of individual elements. 
However, to explore more elaborate behaviors, such as the 
use of periphs (see Section 5.0), automatic layout and live 
shading, we had to implement the design in C++. 
 
A usability study was designed to investigate participants' 
ideas and reactions concerning the use and functionality of 
3Desque. The people who participated were male and 
female employees of Apple Computer, Inc. Their level of 
experience in using the Macintosh ranged from being 
casual users to expert developers. There were ten 
participants in the study. Each study lasted one hour and 
consisted of three parts. 
 
2.2 Usability Study 
In the first part of the usability study participants were 
shown a Macromedia Directorª demonstration of 3Desque 
(based on the final design described later in this paper.) 
The demonstration was designed to familiarize participants 
with 3Desque. We encouraged them to comment on their 
first impressions e.g. what they understood, liked, or had 

problems with. While this led to anecdotal reactions rather 
than quantitative data, the user responses were helpful in 
gauging how familiar the users found the elements of the 
interface and whether they were confused or intrigued by 
its appearance. 
 
2.3 Drag & Drop Behavior of 3Desque 
Participants performed task scenarios designed to assess 
their understanding of 3Desque. The following actions 
were covered: selecting, dragging, dropping and finding 
files; selecting, dragging, dropping, opening, closing, re-
sizing and browsing trays and windows in both 2D and 3D 
views; and scrolling slapped-back windows. We 
documented users' interactions with and comments about 
the interface. The scenarios assessed the participants' 
understanding of the dynamic nature of  3Desque. 
 
2.4 Direct User Feedback on 3Desque Features 
Opinions were elicited from participants on the individual 
features as well as the overall concept of 3Desque. The 
primary issues investigated were: 
 
•  User understanding of graphical proxies at a variety of 

scales and projections 
•  Drag, drop, open and close behavior of trays 
•  Functionality of slapped-back windows 
•  Efficacy of lighting effects 
 
At the end of each session we asked users to evaluate each 
of the features of 3Desque as well as provide overall 
feedback using Nielson's heuristics [18]. All the interviews 
were video taped, and the results from the user study were 
then incorporated into the next version of the prototype. 
 
3.0 Icons in Different Projections 
In response to the problem of uninformative file icons, we 
placed a pictorial representation of the front page of the 
document onto the surface of the icon for that document. 
This is like an existing feature of the Macintosh User 
Interface, most often used by graphical applications like 
Adobe Photoshopª, which use preview icons to represent 
images. We extended this approach to all document types 
including text files and sounds. 
 
An icon could be viewed in three different projections 
(Figure 5), depending on the context. For example in a 2D 
window the icon appeared as a flat rectangle. In the 3D 
window, the icon was slapped back, (i.e. rotated about its 
bottom edge) in an orthographic projection. This made the 
icon a quadrilateral. Finally, when the icon was placed 
within a tray, (explained in the Section 7.0), the icon was 
rotated around its left-hand edge resulting in a "tilted 
icon". The icons were created using a two-pass resampling 
filter, equivalent to having a quadrilateral footprint for 
each final pixel. Vertical dimensions were compressed by a 
factor of three to one. 



3.1 Responses to Different Icon Projections 
In the study, we asked participants to select, drag, drop and 
find documents, some of which were their own, some were 
not, using the icons in a 2D view and a 3D slapped-back 
view. In the 2D view, participants didn’t seem to have too 
much difficulty identifying their own files, however, they 
had difficulty making sense of files which were not of their 
own making. Strongly recognizable icons, like those for 
picture files could be identified, at least for  the type of 
media. In future iterations, we may consider adding a 
graphic to the icon to represent the file format.  
 

 
 

Fig. 5  An icon, a tilted icon and a slapped-back icon. 
 
When the icons were slapped back, some of the 
participants had difficulty identifying the files, even their 
own. The complaints ranged from "not getting enough 
information", to problems "seeing it" because the shading 
was too dark, it was too small (because of the 
foreshortening effect of slapping back) or just not looking 
right.  
 
Though there were several complaints about the 3-D 
slapped-back icons, we have evidence that people could 
recognize what objects were. Sue, for example, came 
across a bug where the wrong picture had been put onto the 
Icon.  Other volunteers were able to select an icon after 
being given a description like, "move the spider icon into 
the media box". This is an indication that participants were 
able to understand more of the 3D icon than they might 
have realized.  However, we should also consider 
removing or improving the slapped-back icon in a future 
version of the interface. 
 

   
Fig. 6  A tilted icon with its proxy view.

 
 

 

to control 

4.0 Proxy Views of Documents 
Any of the three icon projections can be used to reveal 
additional information during the browsing process. This 

involves moving the cursor over the icon while holding 
down a modifier key, in our case the option key. Doing so 
reveals a proxy view of the document (Figure 6).  
A proxy view is much larger than the icon view and 
supports additional affordances for browsing the 
document summary information. This can be seen as an 
extension of the proxy views in Piles [4], to all icons in 
the interface.
 
4.1 User Study Results on Proxy Views 
Users felt the proxy view provided quick and ample 
information on a document. However, holding down the 
option key was considered too burdensome by some users. 
Besides not fitting with the current Macintosh interface 
where modifier keys are reserved for shortcuts and non-
default behaviors, users did not like to have to use two 
hands for a routine action.  Frequently users are engaged in 
a number of office activities like answering the phone or 
drinking coffee while using their computers. Having to use 
two hands for a routine function cuts down on their ability 
to multitask. If possible, an alternative way  this 
feature needs to be considered. 
 
5.0 Avoiding the Visual Cliff 
Currently, when an object scrolls off the edge of the visible 
portion of a window, it disappears. Previous approaches to 
having scrollable areas, that do not have this discontinuous 
property, include perspective walls [12] and fisheye views 
[15], [16].  Perspective walls maintain context in one 
direction by having additional angled faces that are to the 
left and right of the front scrolled area.  The oblique 
orientation means that the sections of wall take up less 
screen space than if they were face on, and perspective 
foreshortening applies a non-linear re-scaling to the 
information on the wall. 
 
Fisheye views have the advantage that they maintain 
context in a 2-D plane, enabling scrolling within the plane 
in any direction.  They have the disadvantage that objects 
change size continuously as the view is scrolled.  This is 
undesirable in a hierarchical interface, since some of the 
objects in the window may themselves contain affordances 
(such as the trays described later in this paper).  Fisheye 
projections have a subtler problem, which is that their 
legibility changes based on the appearance of the 
individual icons.  Icons which are low in contrast relative 
to the background, disappear as they become just a few 
pixels across. 
 
The solution proposed for 3Desque was to have windows 
with an active scrollable area augmented with a border 
region. Within the scrollable region, the icons appear at a 
single scale. As they are scrolled onto the border region 
they are represented by a black rectangle which is scaled 
non-linearly based on the distance from the edge. The 
black rectangles or “periphs”, are rendered onto the border 



region using anti-aliasing so that they are legible even if 
they are less than a pixel across. In the corner regions of 
the border, the non-linear scaling is applied in both 
directions. 
 
A 2-D window containing icons and periphs is shown in 
Figure 7, on the color sheet. It is clear that there are other 
objects off the edge of the scrollable area. The border for 
the window may seem like a waste of space, but provides 
an affordance to manipulate the window. 
 
5.1 User Study Response to Periphs 
In the user study, we asked participants to move 
documents from a tray to a window and between windows. 
We asked them to re-size the window so the file

 became a periph that they had to find by scrolling. 
then that  

icon
 
Half of the participants were uncertain about the scrolling 
window, they felt it moved unexpectedly. Scrolling the 
contents of a window was achieved by dragging on the 
space between icons directly. This is contrary to the 
current Macintosh OS convention where the same action 
would bring about an area selection rectangle. Since the 
borders no longer had scroll bars we were exploring other 
ways to scroll windows. This approach revealed the need 
for more explicit affordances on the windows, or a 
different cursor state. 
 
As for the periphs, 7 of the 10 understood and appreciated 
the idea. One participant thought initially that the periphs 
were a bug, but by the end of half an hour he thought they 
were "really cool". We had deliberately left periphs out of 
the introduction, so that we could assess user's reactions to 
encountering them interactively. The impression of them 
being a bug arose because they are small line-like elements 
which usually only appear in current interfaces due to 
redraw errors in drawing algorithms. However, once they 
were seen as deliberate their functionality was understood 
and appreciated. Another participant wanted to see a proxy 
view from a periph, which we had not considered. In 
general, the participants expressed admiration for periphs, 
which were seen as a good solution to a difficult problem. 
 
6.0 Icons and Windows in Projective Spaces 
One way to use space efficiently is to let the user change 
the scale of graphical elements while maintaining the 
global context. In addition to fish-eye views and 
perspective walls, there is the idea of “slapped-back” 
windows. When slapping back a window from screen-
aligned (i.e. 2-D) to a slapped-back representation (such as 
with 3-D foreshortening), the contents of the window is 
remapped using a geometric transformation. Different 
image transformations have the following trade-offs: 
 
6.1 Scaling in One or Two Dimensions 
With uniform scaleing, the window and its contents are 
resized proportionally (Figure 8). This has the 

disadvantage that text and icons must be constantly resized 
and affordances may become too small to use. However, 
such an interface can be useful for navigating quickly in 
and out of large amounts of data points for example 
HotSauce [8], or Pad[14]. The uniform scaling case is 
equivalent to an interface in perspective projection where 
the elements remain parallel to the screen, e.g. 
"Workscape" [13], and more recently, "Data Mountain" 
[19] and Pad Prints [20]. 
 

 
Fig. 8  A square scaled uniformly in two dimensions. 

 
6.2 Perspective Projection 
In a perspective projection, rectangles  are not parallel 
to the plane of the screen are transformed into 
quadrilaterals whose edges converge to vanishing points 
(Figure 9). This full perspective projection resizes and 
distorts icons and text continuously. However, it has the 
advantage that objects may be made smaller in a coherent 
way by moving them further away from the screen. 

that

 

 
 

Fig. 9  A square slapped back in perspective projection. 
 

6.3 Orthographic Projections 
In an orthographic projection, a horizontal rectangle is 
scaled vertically by a constant factor and sheared 
horizontally by a constant angle (Figure 10). In our 
experiments the angle was chosen to be 45 degrees. This 
projection has the advantage that objects may be moved in 
depth without being resized. If a single orthographic 
projection is used, then 2-D artwork may be used to 
represent a 3-D object. This helps with efficient 
implementations employing sprite-based graphics. 
 

 
Fig. 10  A square slapped back in orthographic projection. 
 
A more fundamental property of orthographic projections 
is depth ambiguity. The appearance of an object on screen 
will be independent of its depth. The only clue to depth is 
given by occlusion from other objects. This means that the 
depth representation can by a logical ordering of elements 
rather than an absolute position. 
 



The advantage of this property of orthographic projections 
is that when objects have their ordering changed, their 
shape does not change as is shown in (Figure 11). By 
contrast, in a perspective projection, bringing a window 
nearer or further from the viewer would change the size 
and shape of its projection on the screen. It is possible to 
keep the outlines invariant in perspective projections as the 
ordering changes (Figure 12), but then the implied world-
space scale of the two objects changes.  It is this property 
that makes setting up perspective scenes so tedious in 3-D 
animation systems. 
 
Needless to say, 2-D windows-based interfaces also exploit 
depth ambiguity since they are a special case of 
orthographic projections (with no scaling and zero shear). 
In 2-D, this leads to the intuition that we bring a window in 
front of another one. It is meaningless to say "I'll bring that 
window one inch nearer". 
 
 

          
 

Fig. 11  Changing depth order in orthographic projection. 
 
 
 

 
 
Fig. 12  Changing depth order in perspective projection. 

 
Figure 13, on the color sheet, shows a window face-on and 
in slapped-back orthographic projection. The slapped-back 
version of the same window takes up much less screen 
area. The affordances for resizing, opening, closing, and 
switching projection, were put on the front edge of the 
window and remain constant in either projection. 
 
Some design ideas in this paper, such as the periphs, are 
independent of whether the scene is 2-D or 3-D, others, 
like the current design of trays, depend on being in one of 
the 3-D projections.  
 
6.4 User Response to Slapped-Back Windows 
When working with the slapped-back window view, 
participants got used to navigating by the periphs on the 
edge of the window. However, they were working with a 
limited number of files (26) and folders (7) and worried 
about navigating a whole desktop. Seven of the 
participants did not like slapped-back windows, some of 
them felt: (1) they did not offer as much information as in 
the 2D window; (2) they looked distorted; and (3) they 
were not aesthetically pleasing when a number of them 
were open. The people who did like them did so because 

they would save screen space, and their ability to recognize 
the icons in this projection was not impaired. 
 
7.0 Trays, Folders and Piles 
As part of the exploration of 3-D metaphors for GUIs we 
wanted to come up with a new user-interface element 
which would be intermediate in functionality between a 
folder and a window. As stated in the introduction, folders 
have the problem that they indicate little about their 
contents and are not ow  directly. Windows, 
on the other hand, use large amounts of screen space and 
display icons spaced far apart from each other. In 
designing trays we were inspired by the hierarchical list 
functionality of Macintosh list windows (Figure 2). Folder 
elements in a list have small affordances  allow them to 
be opened hierarchically. We wanted to create an 
equivalent representation for icons. 

able to be br sed

that

generated
s

 
The Piles project [4] offered an interesting alternative 
mechanism, but it was not ideally suited to our purposes 
for several reasons. Since piles were  by 
clustering icons together, pile  provided no natural place 
for additional affordances. This was solved, by 
spontaneously generating a base (plinth) with additional 
buttons on it. A more serious problem was the geometry 
used to stack the icons. The structure of a pile naturally 
reveals just the edge of all the documents except the 
nearest one (Figure 14).   
 

 
Fig. 14  Documents in a “pile". 

 
This makes it very difficult to identify an individual icon 
within a pile except by browsing through each element in 
turn. The size of a pile is determined by the number of 
elements that have been heaped together. There is no 
natural way to control the number of elements displayed.  
 
As an alternative, we devised an element called a “tray”. A 
tray is a horizontal box with a handle at one end. The 
handle may be used to grow or shrink the linear extent of 
the tray. Icons within a tray are shown rotated back around 
a vertical axis, thus creating a "tilted" icon. This enables 
the entire icon to be seen, rather than just the edge. Figure 
15 illustrates this arrangement. 
 
When many thumbnails are in a tray, the effect is rather 
like viewing a set of books on a shelf. This approach of 
stacking sideways on a tray, makes very good use of space. 
The number of icons displayed is controlled by the linear 
extent of the tray. A small border region shows periphs for 



those icons not already visible. The name of the tray is 
indicated along the front edge. By placing one tray inside 
another it is possible to represent a hierarchy. A kinematic 
constraint system ensures that growing a tray also grows 
the parent tray on which it sits. This prevents one tray from 
overhanging another.  
 
 

 
 

Fig. 15  Documents in a “tray". 
 
Since folders are simpler and more compact than trays, it is 
desirable to support both representations. A 3-D interface 
s weight method to 
transform between the two. Note that when a tray is 
opened as a window, it leaves a rectangular footprint in its 
parent tray.  

hould have an elegant and light

 
The major advantage of trays over folders is progressive 
disclosure while maintaining compactness. The major 
drawback of trays is that they can be abused. In particular, 
stacking a large number of trays on top of each other can 
entirely obscure an icon behind the stack. This is illustrated 
in Figure 16 on the color sheet. To solve this problem we 
might adapt the icon placement algorithm so that icons 
move to remain visible despite stacks of trays in front of 
them. This is an area for future work. 
 
Finally, it is important to be able to see the names of icons 
to identify them. We have chosen not to show the names 
all the time (for reasons of compactness) but they must be 
available on request. This is invoked by placing the cursor 
over the tray while depressing the proxy-browse modifier 
key.  There are two approaches to displaying names. One 
is to have the names appear in vertical banners above each 
icon. This is not very legible. A second approach is to have 
the names appear in captions, connected to the files by 
stringers. This arrangement is shown in  Figure 17 on the 
color sheet. 
 
While it looks unwieldy for permanent display, it is easy to 
browse temporarily. This approach does break down if too 
many names are viewed at once. The user finds it difficult 
to associate the names with the particular icons. In that 
case it is natural to employ the browsing mechanism for 
the individual documents by moving the cursor over the 
icons to see its full proxy view as in Figure 6. 
 
7.1 User Study Response to Trays as Elements 
In the study, we asked participants to drag and drop icons 
into a variety of trays and then to stack the trays to form a 
hierarchy. Though the concept of the trays was liked, 
certain features of this implementation were not: (1) the 

trays were deemed to be too drag intensive, (2) there was 
no quick way to view all the files not shown in a tray or to 
hide all the files in a tray, (3) the stacking order was 
thought to be counter intuitive (the parent tray is at the 
bottom of the pyramid rather than the top),  and (4) it was 
disliked that the documents at the "front" of a  tray (nearest 
the handle) were the first ones to disappear as the tray is 
resized. (This could be easily fixed by changing the layout 
algorithm). 
 
Some participants had difficulty dragging files and trays.  
They were unable to tell when releasing the documents 
over the trays would mean that they would end up inside 
the tray rather than on the desktop. Users were constantly 
confused about what had happened to their files. As one 
participant said of the dropping process, "I feel like the 
space shuttle when it is trying to dock."  
 
This problem was addressed in the next version of the 
system where a red line was drawn around the top surface 
of the tray when a currently grabbed document would be 
placed inside the tray if released.  
 
8.0 Object Placement Algorithms 
When implementing a 3-D GUI, it is necessary to take 
special care with icon placement algorithms (which in this 
case includes trays as well). Icon placement is an issue 
when a user drags an object from one place to another, for 
example rearranging icons within a window. This is 
especially important for overlapping 3-D objects. Two 
trays which overlap in 3-D space would violate ease of use 
requirements as well as breaking the assumptions of the 
sprite-based renderer. 
 
For this version of 3Desque, a placement strategy was 
adopted as follows: Whenever an icon or tray was moved, 
it would have its vertical location snap to one of an evenly 
spaced set of rows. On being placed into the row, the icons 
to the left would be moved until an overlap no-longer 
occurred. This left-hand icon would then do the same to 
icons to its left, until an icon was encountered which did 
not need to move, or no more icons were found to the left. 
Icons to the right would be moved to the right in the same 
way. This has the effect of moving neighboring icons the 
least amount required to be consistent with not 
overlapping. 
 
When a tray was being enlarged by dragging on the handle, 
the right-hand neighboring icons would be moved using 
the same algorithm. This was done on the fly, so the 
interface remains consistent in appearance during the 
dragging operation.  
 
8.1 User Study Response to Object Placement 
Participants were asked to move the icons and trays in 
between rows. Some people were uncertain quite where the 
icon or tray would land, when they released the item, but 



once we improved the feedback, using the mechanism 
described in Section 7.1, people found this more 
predictable.  
 

provided trays

too 
many icons or trays obscured the details of the texture. 
Figures 19 and 20

 

lgorithm, which

9.0 Window Hierarchy Display Using Beams 
The use of a 3-D projection  with a natural 
way to represent hierarchy. We wished to do the same for 
windows. To do this we adopted the technique of having 
transparent beams (Figures 18 and 19 on the color sheet), 
connecting a tray footprint to its corresponding window. 
As Loretta Staples pointed out in [9], "Transparency 
provides the opportunity for the simultaneous viewing of 
objects that might otherwise be obscured". Our display of 
hierarchy was similar in spirit to Cone Trees [5] and the 
Spiral Calendar [6]. 
 
Using these beams for slapped-back windows provided a 
natural graphical counter-part to the grow animations used 
in 2-D systems. (After clicking on a folder, the rectangles 
expand up before a window appears. This heralds its 
arrival and signals its parentage), unfortunately, in the user 
study, we found, that using beams to indicate parentage for 
several hierarchies at once, confused some users. A more 
restrained approach might be to only show the beams for 
the currently selected hierarchy. 
 
10.0 Uses of Shading, Textures and Shadows 
One disadvantage of orthographic projections is that they 
can look distorted and “flat”. A way to increase the sense 
of depth is to use depth cueing in which the objects became 
darker as they recede up the screen. Figures 18 and 19, on 
the color sheet, show the same scene with and without 
depth cueing. 
 
Since the background and the scrollable regions of 
windows are textured, it is natural to use that texture to 
indicate something about the contents of the window or 
tray. To prevent visual clutter from obscuring periphs and 
control buttons, window and tray frames were kept 
untextured but they were colored using the average 
appearance of the texture. This average color became an 
additional method for identifying the folder even if 

 show the use of texturing to customize 
different windows and trays. 
 
Finally to enhance the sense of visual realism, and so 
counteract the limitations of the projection, shadows were 
incorporated into the display engine. Since absolute depths 
are not available for windows, it was decided to only have 
shadows cast from objects onto those surfaces with which 
they were directly in contact, such as icons onto their 
parent tray and the tray onto the background in Figure 17. 
This use of shadows did tend to reinforce the sense of 
proximity for certain interface elements. 

 

11.0 Conclusions 
While the project began with an interest in 3D projections, 
the most successful elements, from the point of view of our 
users, were the use of pop-up proxies to show document 
contents, and periphs, to show additional context off the 
edge of windows. The trays were thought to be useful, but 
some users had problems manipulating them, and slapped-
back windows were thought to be interesting but not as 
obviously useful as the other elements. 
 
By building an entire system, rather than by studying the 
pieces in isolation, we were forced to address the behavior 
of elements as they interacted. This forced us to implement 
an automatic layout a  proved satisfactory 
at preventing overlaps, but still has room for improvement. 
The problem of stacked trays obscuring objects behind 
them was identified, but again needs further work. Our 
experience of testing the ideas, albeit informally, indicated 
that the use of 3-D elements to implement a graphical user 
interface provided real improvements in the user 
experience and was not just cosmetic. 
 
12.0 Acknowledgments 
We wish to thank Bruce Horn, Frank Casanova, Frank 
Crow and Apple Computer, Inc. for their support in the 
development and testing of 3Desque. We would also like 
to thank the reviewers for their ideas about how to explain 
our work more clearly. 
 
13.0 References 
[1] The idea of "flatland" is based on "Flatland: A 
Romance of Many Dimensions (London, 1884) and 
appears in "Envisioning Information" by Edward R. 
Tufte. Graphics Press (1990) 12. 
 
[2] Malone,T.W. How do People Organize their 
desks? Implications for the design of Office information 
systems. ACM transaction on Office Information systems 
1,1, (Jan. 83), 99-112. 
 
[3] Apple Computer, Inc. Human Interface 
Guidelines: the Apple Desktop Interface. Addison-Wesley 
publishing Co., Inc. (1987). 
 
[4] Mander,R., Solomon,G., and Wong,Y. A Pile 
based metaphor for supporting casual organization of 
information. ACM SIGCHI Conference. on Human 
Factors in Computing Systems proceedings. (1992), 627 - 
634. 
 
[5] Robertson,G., Mackinlay, J.D. and Card, S.K. 
Cone Trees: Animated 3D visualization of hierarchical 
Information. In Proc. ACM SIGCHI 91 Conference. on 
Human Factors in computing Systems (April 1991), 189-
194. 



 
[6] Card,S.K, with Pirolli,P., and Mackinlay,J.D. 
The Cost of Knowledge Characteristics Function. Display 
Evaluation for direct Walk Dynamic Information 
Visualizations. ACM SIGCHI 94 Conference. on Human 
Factors in computing Systems. (1994), 238-244. 
 
[7] Robertson, G. Card,S.K and Mackinlay,J.D. 
Information Visualization Using 3D Interactive 
Animation. Communications of the ACM, (1993) 36 (4). 
 
[8] http://www.xspace.net/hotsauce/index.html 
 
[9] Staples, L. Representation in Virtual Space: 
Visual Convention in the Graphical User Interface. 
Proceedings from INTERCHI (1993), 348-354. 
 
[10] Johnson, B. and Shneiderman, B. Space-filling 
approach to the visualization of hierarchical information 
structures. In Proceedings IEEE Visualization 191, pp. 
284-291. 
 
[11] Card, S.K., Robertson, G.G., & Mackinlay, J.D. 
The Information Visualizer, and Information Workspace. 
In Proceedings of CHI191, Human Factors in Computing 
Systems. ACM press (April-May 1991), 181-188. 
 
[12] Mackinlay, J.D., Robertson, G.G. The 
perspective Wall: Detail and context smoothly integrated. 
in Proc. ACM SIGCHI 91 Conference. on Human Factors 
in computing Systems. (April 1991), 173-179. 
 
[13] Ballay,J.M. Designing Workscape: An Inter 
disciplinary Experience. ACM SIGCHI 94 Conference. 
on Human Factors in computing Systems. (April 
1991),189-194. 
[14] Perlin,K. and Fox. Pad: An alternative approach 
to the computer interface. prc. SIGGRAPH 1994, ACM 
Press. (1993), 57-72. 
 
[15] Sarkar,M., and Brown,M.H. Graphical Fisheye 
Views of Graphs. ACM SIGCHI 92 Conference. on 
Human Factors in computing Systems (1992), 83-92. 
 
[16] Furnas,G.W. Generalized Fisheye Views. in 
Proc. ACM SIGCHI 86 on Human factors in Computing 
systems pages. (1986),16-23. 
 
[17] Macromedia, Inc. Director  Version 4, (1994). 

 
[18] Nielson,J. Enhancing the Explanatory Power of 
Usability Heuristics. Proceedings ACM CHI 94  
Conference,   (Boston, MA,  April 24-28, 1994) 152-158. 
 
[19] Robertson, G., Czerwinski, M., Larson, K., 
Robbins. D.C., Thiel, D., and Maarten van Dantzich. Data 
mountain: Using Spatial Memory for Document 
Management. Proceedings of the 11th Annual UIST 
Conference. (Nov. 1998). 
 
[20] Hightower, R.R., Laura T. Ring, Helfman, J.I., 
Bederson, B.B., Hollan, J.D. Pad Prints: Graphical 
Multiscale Web Histories. Proceedings of the 11th Annual 
UIST Conference. (Nov. 1998). 
 


